Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends

Autores UPV


This article assesses the effect of mix design parameters on the compressive strength and thermal performance of alkali silicate-activated blends of metakaolin (MK) and granulated blast furnace slag (GBFS). A strong interrelationship between the effects of activator composition and the GBFS/(GBFS + MK) ratio is identified through statistical analysis of compressive strength data. Pastes formulated with higher SiO 2/Al 2O 3 molar ratios show improvements in mechanical strength with increasing GBFS addition, associated with the formation of a structure comprising coexisting aluminosilicate 'geopolymer' gel and Ca-rich Al-substituted silicate hydrate (C-(A)-S-H) reaction products. The inclusion of GBFS in MK-based geopolymers seems also to improve their performance when exposed to high temperatures, as higher residual compressive strengths are reported for these mixtures compared to solely MK-based systems. Only slight differences in shrinkage behaviour are observed at temperatures of up to 600 °C with the inclusion of GBFS; however, slag-blended pastes exhibit enhanced stability at temperatures exceeding 800 °C, as no variation in the compressive strength and no additional shrinkage are identified. These results suggest that nanostructural modifications are induced in the gel by the inclusion of GBFS into MK-based geopolymers, improving the overall performance of these materials. © 2011 Springer Science+Business Media, LLC.