Propiedades mecánicas y tribológicas de materiales nanoestructurados de carburo de silicio/nanofibras de carbono

Autores UPV
Revista Boletín de la Sociedad Española de Cerámica y Vidrio


The development of new ceramic/carbon nanostructured materials is a very interesting option from the point of view of the automotive and aerospace industries. Its low density, high mechanical strength, high oxidation resistance and excellent friction behavior allows the use of these composites as functional materials. The aim of this study was to evaluate the influence of carbon nanofibers (CNFs) on the mechanical and tribological behavior of silicon carbide/CNFs nanocomposite obtained by spark plasma sintering technique. The tribological study was carried out in a ball-on-disk apparatus under dry sliding conditions (dry friction) and a fixed load of 15 N. The friction coefficient and wear rate were measured for each composite. Scanning electron microscope was used to analyze wear surface formed. The results show simultaneous improvement of wear behavior and mechanical properties of ceramic materials by incorporating of carbon nanofibers.