PET System Synchronization and Timing Resolution Using High-Speed Data Links

Autores UPV
Revista IEEE Transactions on Nuclear Science


Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this effect to be negligible on overall timing resolution. This is usually achieved by connecting all boards to a common backplane with a precise clock delivery network; however, this approach forces a rigid structure on the whole PET system and may pose scalability problems. © 2006 IEEE.