Architecture and phases composition of suspension plasma sprayed alumina¿titania sub-micrometer-sized coatings

Autores UPV


Sub-micrometer-sized Al 2O 3-TiO 2 plasma-sprayed coatings exhibit superior performances compared to micrometer-sized ones. Two routes can be implemented to manufacture such finely structured coatings: i) spraying micrometer-sized agglomerates of nanometer-sized particles which results in a two-scale coating architecture and ii) spraying a suspension of sub-micrometer-sized particles (suspension plasma spraying, SPS). SPS was implemented in this study and Al 2O 3-base coatings with 13 and 60 wt.% of titania, respectively, were manufactured by spraying a suspension made of a mixture of Al 2O 3 and TiO 2 particles both of 300 nm, average diameter. Coating structural features and phase contents were studied. Results show that the coatings exhibit a very fine lamellar structure with a homogeneous repartition of Al and Ti. Complex phases, made of intermediate Al, Ti, and O oxides, have been also identified. Indeed, coatings formation results from rapid solidification rates and high transient thermal fluxes imparted by the plasma flow to the substrate due to the short spray distance encountered in SPS (in the order of 30 mm) requested by the small kinetics and thermal inertia of sub-micrometer-sized particles. © 2011 Elsevier B.V. All rights reserved.