Nanoscopic optical sensors based on functional supramolecular hybrid materials

Autores UPV
Revista Analytical and Bioanalytical Chemistry


This review highlights how the combination of supramolecular principles and nanoscopic solid structures enables the design of new hybrid sensing ensembles with improved sensitivity and/or selectivity and for the targeting of analytes for which selectivity is hard to achieve by conventional methods. Such ideas are bridging the gap between molecules, materials sciences and nanotechnology. Relevant examples will be detailed, taking into account functional aspects such as (1) enhanced coordination of functionalized solids, (2) enhanced signalling through preorganization, (3) signalling by assembly-disassembly of nanoscopic objects, (4) biomimetic probes utilizing discrimination by polarity and size and (5) distinct switching and gating protocols. These strategies are opening new prospects for sensor research and signalling paradigms at the frontier between nanotechnology, smart materials and supramolecular chemistry. © 2010 Springer-Verlag.