Sliding Mode Speed Auto-regulation Technique for Robotic Tracking

Autores UPV
Revista Robotics and Autonomous Systems


In advanced industry manufacturing involving robotic operations, the required tasks can be frequently formulated in terms of a path or trajectory tracking. In this paper, an approach based on sliding mode conditioning of a path parametrization is proposed to achieve the greatest tracking speed which is compatible with the robot input constraints (joint speeds). Some distinctive features of the proposal are that: (1) it is completely independent of the robot parameters, and it does not require a priori knowledge of the desired path either, (2) it avoids on-line computations necessary for conventional analytical methodologies, and (3) it can be easily added as a supervisory block to pre-existing path tracking schemes. A sufficient condition (lower bound on desired tracking speed) for the sliding mode regulation to be activated is derived, while a chattering amplitude estimation is obtained in terms of the sampling period and a tunable first-order filter bandwidth. The algorithm is evaluated on the freely accessible 6R robot model PUMA-560, for which a path passing through a wrist singularity is considered to show the effectiveness of the proposal under hard tracking conditions. © 2011 Elsevier B.V. All rights reserved.