Explora I+D+i UPV

Volver atrás Publicación

Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms

Compartir
Autores UPV

Año

Revista

Physiological Measurement

Abstract

The standard electrocardiogram (ECG) is the most common non-invasive way to study atrial fibrillation (AF). In this respect, previous works have shown that the surface lead V 1 reflects mainly the dominant atrial frequency (DAF) of the right atrium (RA), which has been widely used to study AF. In a similar way, AF organization and fibrillatory (f) wave amplitude are two recently proposed non-invasive AF markers. These markers need to be validated with invasive recordings in order to assess their capability to reliably reflect the internal fibrillatory activity dynamics. In this work, these two non-invasive metrics have been compared with similar measures recorded from two unipolar atrial electrograms (AEGs). For both ECG and AEG signals, AF organization has been computed by applying a nonlinear regularity index, such as sample entropy (SampEn), to the atrial activity (AA) and to its fundamental waveform, defined as the main atrial wave (MAW). The surface and epicardial f wave amplitude has been estimated through their mean power. Results obtained for 38 patients showed statistically significant correlations between the values measured from surface and invasive recordings, thus corroborating the usefulness of the aforesaid markers in the non-invasive study of AF. Precisely, for AF organization computed from the MAW, the correlation coefficients between surface and both AEGs were R = 0.926 (p < 0.001) and R = 0.932 (p < 0.001). For f wave amplitude, slightly lower significant relationships were noticed, the correlation coefficients being R = 0.765 (p < 0.001) and R = 0.842 (p < 0.001). These outcomes together with interesting linear relationships found among the parameters suggest that AF regularity estimated via SampEn and f wave amplitude can non-invasively characterize the epicardial activity related to AF. © 2011 Institute of Physics and Engineering in Medicine.