Using GPUs for the Exact Alignment of Short-Read Genetic Sequences by Means of the Burrows-Wheeler Transform

Autores UPV
Año
Revista IEEE/ACM Transactions on Computational Biology and Bioinformatics

Abstract

General Purpose Graphic Processing Units (GPGPUs) constitute an inexpensive resource for computing-intensive applications that could exploit an intrinsic fine-grain parallelism. This paper presents the design and implementation in GPGPUs of an exact alignment tool for nucleotide sequences based on the Burrows-Wheeler Transform. We compare this algorithm with state-of-theart implementations of the same algorithm over standard CPUs, and considering the same conditions in terms of I/O. Excluding disk transfers, the implementation of the algorithm in GPUs shows a speedup larger than 12, when compared to CPU execution. This implementation exploits the parallelism by concurrently searching different sequences on the same reference search tree, maximizing memory locality and ensuring a symmetric access to the data. The paper describes the behavior of the algorithm in GPU, showing a good scalability in the performance, only limited by the size of the GPU inner memory.