Resonant coupling of Rayleigh waves through a narrow fluid channel causing extraordinary low acoustic transmission

Autores UPV
Año
Revista JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA

Abstract

Coupling of Rayleigh waves propagating along two metal surfaces separated by a narrow fluid channel is predicted and experimentally observed. Although the coupling through a fluid (water) is weak, a strong synchronization in propagation of Rayleigh waves even for the metals with sufficiently high elastic contrast (brass and aluminum) is observed. Dispersion equation for two polarizations of the coupled Rayleigh waves is derived and experimentally confirmed. Excitation of coupled Rayleigh waves in a channel of finite length leads to anomalously low transmission of acoustic energy at discrete set of resonant frequencies. This effect may find useful applications in the design of acoustic metamaterial screens and reflectors. © 2012 Acoustical Society of America.