Response of the photosynthetic apparatus to a flowering-inductive period by water stress in Citrus

Autores UPV
Revista Trees


The photosynthetic responses to a flowering-inductive water-stress period and recovery were studied and compared in two Citrus species. Under greenhouse conditions, Fino lemon and Owari satsuma trees were subjected to moderate (-2 MPa at predawn) and severe (-3 MPa) water stress levels and were re-watered after 60 days. Vegetative growth was inhibited during the stress assays, and strong defoliation levels were reported, especially in Fino lemon. In both species, bud sprouting was induced after re-watering. Flowers and vegetative shoots developed in Owari satsuma after a drought period, and the development was independent of the stress level. In Fino lemon, vegetative shoots and flowers were primarily formed after moderate and severe stress, respectively. The photosynthetic rate and stomatal conductance were reduced by water stress, and a marked increase in water-use efficiency at the moderate water deficit level was observed. Nevertheless, the photosynthetic apparatus was not damaged, since the maximum quantum yield, photosynthetic pigment concentrations and Rubisco level and activity did not change. Furthermore, the measured malonyldialdehyde (MDA) and peroxidase activity indicated that oxidative stress was not specifically triggered by water stress in our study. Therefore, the gas exchange, fluorescence and biochemical parameters suggested that diffusional limitations to photosynthesis predominated in both of the studied Citrus species, and explained the rapid recovery of the photosynthetic parameters after rehydration. The net CO 2 fixation rate and stomatal conductance were recovered within 24 h in Fino lemon, whereas 3 days were required in Owari satsuma. This suggests the presence of some metabolic limitations in the latter species. Furthermore, the sensibility of the defoliation rates, the accumulation of proline and the stomatal behaviour in response to water stress indicated a higher drought tolerance of Fino lemon, according to its better acclimation to hot climates. © 2011 Springer-Verlag.