Detección de plagio translingüe utilizando el diccionario estadístico de BabelNet

Autores UPV
Año
Revista COMPUTACIÓN Y SISTEMAS. Revista Iberoamericana de Computación

Abstract

En los últimos años ha habido importantes avances en el campo de la detección de plagio automática. Uno de ellos es la detección de plagio translingüe, la cual trata de detectar el plagio entre documentos en diferentes idiomas. La mayoría de aproximaciones que existen para esta tarea hacen uso de diccionarios estadísticos para lidiar con las traducciones de las palabras de los documentos. Un diccionario estadístico nos proporciona, para una palabra dada, la lista de traducciones posibles con sus respectivas probabilidades. El objetivo de este trabajo es analizar el rendimiento del diccionario estadistico de la red semántica multiling üe BabelNet para la tarea de detección de plagio translingüe. En la evaluación comparamos sus resultados con los ofrecidos por un diccionario estadístico entrenado con el conocido modelo de alineamiento IBM M1, ambos utilizando el modelo estado del arte CL-ASA como base. Los resultados de los experimentos indican que BabelNet es una buena alternativa como diccionario estadístico.