Development of Oligonucleotide Microarrays onto Si-Based Surfaces via Thioether Linkage Mediated by UV Irradiation

Autores UPV
Año
Revista BIOCONJUGATE CHEMISTRY

Abstract

Selective covalent immobilization of thiolated oligonucleotides onto an epoxy-functionalized silicon-substrate can be achieved via light radiation (365 nm). Following this approach, thiol-modified oligonucleotide probes were covalently attached as microarrays, reaching an immobilization density of 2.5 pmol·cm -2, with a yield of 53%. The developed method presents the advantages of spatially controlled probe anchoring (by means of using a photomask), direct attachment without using cross-linkers, and short irradiation times (10 min). Hybridization efficiencies up to 65%, with full complementary strands, were reached. The approach was evaluated by scoring single nucleotide polymorphisms with a discrimination ratio around 15. Moreover, sensitive and selective detection of bacterial Escherichia coli was demonstrated. © 2012 American Chemical Society.