A new geopolymeric binder from hydrated-carbonated cement

Autores UPV
Año
Revista MATERIALS LETTERS

Abstract

This paper evaluates the use of hydrated Portland cement as the raw material in the production of geopolymers. The silicon and aluminium oxides needed for the geopolymerization process were produced by the carbonation of hydrated Portland cement, which transforms CSH and CAH (Portland cement hydrates) into silica and alumina gels. Hydrated-carbonated Portland cement was alkali activated with a NaOH/waterglass solution. Pastes and mortars were prepared, and micro-structural and mechanical properties were analyzed. It has been noted that geopolymers are mechanically stable and yield compressive strength higher than 10 MPa when mortars are cured at 65 °C for 3 days. The results have shown that there are interesting possibilities for re-using the cement-rich fraction of construction and demolition waste. Alkaline activation of hydrated-carbonated Portland cement could be considered a low CO 2-emission binder. © 2012 Elsevier B.V. All rights reserved.