Determination of rail vertical profile through inertial methods

Autores UPV
Año
Revista Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit

Abstract

Undergrounds and other metropolitan railway systems are characterized by their intense traffic, lasting up to 20 h per day, and so they need their maintenance work programmes to be optimized, implying an optimization of the monitoring processes. This article proposes an alternative to the traditional optical methods for monitoring rail profiles which can only be carried out by special vehicles. This is a new procedure that obtains the rail profile by means of inertial methods. The model this work is based on takes its input from the vertical accelerations produced in railway axles measured in trains running on regular services and calculates the rail irregularities that have originated them. The model uses the Fourier transform in order to solve the equations and find the transfer function that relates the input function and the output function in the frequency domain. The solution is then reverted into the time domain by applying the inverse Fourier transform. Data input comes from real measurements taken on line 9 of the Madrid underground, and the model's effectiveness was then analysed by comparing the output data with the rail profile taken using optical methods.