Programmable integrated front-end for SiPM/PMT PET detectors with continuous scintillating crystal

Autores UPV
Año
Revista Journal of Instrumentation

Abstract

AMIC architecture has been introduced in previous works in order to provide a generic and expandable solution for implementing large number of outputs SiPM array/PMT detectors. The underlying idea in AMIC architecture is to calculate the moments of the detected light distribution in an analog fashion. These moments provide information about energy, x/y position, etc. of the light distribution of the detected event. Moreover this means that a small set of signals contains most of the information of the event, thus reducing the number of channels to be acquired. This paper introduces a new front-end device AMIC2GR which implements the AMIC architecture improving the features of the former integrated devices. Higher bandwidth and filtering coefficient precision along with a lower noise allow to apply some detector enhancements. Inhomogeneity among detector elements throughout the array can be reduced. Depth of interaction measurements can be obtained from the light distribution analysis. Also a common trigger signal can be obtained for the whole detector array. Finally AMIC2GR preamplifier stage close to SiPM output signals optimizes signal to noise ratio, which allows to reduce SiPM gain by using lower operating voltages thus reducing dark noise