Detection of Visual Defects in Citrus Fruits: Multivariate Image Analysis vs Graph Image Segmentation

Autores UPV
Revista Lecture Notes in Computer Science


This paper presents an application of visual quality control in orange post-harvesting comparing two different approaches. These approaches correspond to two very different methodologies released in the area of Computer Vision. The first approach is based on Multivariate Image Analysis (MIA) and was originally developed for the detection of defects in random color textures. It uses Principal Component Analysis and the T2 statistic to map the defective areas. The second approach is based on Graph Image Segmentation (GIS). It is an efficient segmentation algorithm that uses a graph-based representation of the image and a predicate to measure the evidence of boundaries between adjacent regions. While the MIA approach performs novelty detection on defects using a trained model of sound color textures, the GIS approach is strictly an unsupervised method with no training required on sound or defective areas. Both methods are compared through experimental work performed on a ground truth of 120 samples of citrus coming from four different cultivars. Although the GIS approach is faster and achieves better results in defect detection, the MIA method provides less false detections and does not need to use the hypothesis that the bigger area in samples always correspond to the non-damaged area