Optimized Multipactor-Resistant Wedge-Shaped Waveguide Bandpass Filters

Autores UPV
Año
Revista IEEE Transactions on Plasma Science

Abstract

Wedge-shaped waveguides present a certain advantage with respect to rectangular waveguides regarding their resistance to multipactor discharges. In this paper, the optimal configuration for the wedge geometry is investigated based on theoretical results, on a precise multipactor prediction tool, and on previous experience. In addition, design rules are presented, which allow us to achieve for wedge-shaped filters electrical performances comparable to the ones of rectangular waveguide filters, while at the same time improving the multipactor-free power range. As a proof of concept, two three-pole bandpass filters with equivalent electrical characteristic of 150-MHz bandwidth, centered at 12 GHz (Ku band), and the same $Q$ factor have been designed, manufactured, and tested. The first design is based on conventional rectangular waveguide technology, while the second one has non-parallel broadside walls (wedge-shaped cross section). The multipactor power threshold and RF performance of the filters have been measured in order to validate the improvements achievable employing wedge-shaped resonators.