Block pivoting implementation of a symmetric Toeplitz solver

Autores UPV
Revista Journal of Parallel and Distributed Computing


Toeplitz matrices are characterized by a special structure that can be exploited in order to obtain fast linear system solvers. These solvers are difficult to parallelize due to their low computational cost and their closely coupled data operations. We propose to transform the Toeplitz system matrix into a Cauchy-like matrix since the latter can be divided into two independent matrices of half the size of the system matrix and each one of these smaller arising matrices can be factorized efficiently in multicore computers. We use OpenMP and store data in memory by blocks in consecutive positions yielding a simple and efficient algorithm. In addition, by exploiting the fact that diagonal pivoting does not destroy the special structure of Cauchy-like matrices, we introduce a local diagonal pivoting technique which improves the accuracy of the solution and the stability of the algorithm.