Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: A clinical-computational study

Autores UPV
Revista Heart Rhythm


Background: Ablation is an effective therapy in atrial fibrillation (AF) patients in which an electrical driver can be identified. Objective: The aim of this study is to present and discuss a novel and strictly non-invasive approach to map and identify atrial regions responsible for AF perpetuation. Methods: Surface potential recordings of 14 patients with AF were recorded using a 67-lead recording system. Singularity points (SPs) were identified in surface phase maps after band-pass filtering at the highest dominant frequency (HDF). Mathematical models of combined atria and torso were constructed and used to investigate the ability of surface phase maps to estimate rotor activity in the atrial wall. Results: The simulations show that surface SPs originate at atrial SPs, but not all atrial SPs are reflected at the surface. Stable SPs were found in AF signals during 8.3±5.7% vs. 73.1±16.8% of the time in unfiltered vs. HDF-filtered patient data respectively (p<0.01). The average duration of each rotational pattern was also lower in unfiltered than in HDF-filtered AF signals (160±43 vs. 342±138 ms, p<0.01) resulting in 2.8±0.7 rotations per rotor. Band-pass filtering reduced the apparent meandering of surface HDF rotors by reducing the effect of the atrial electrical activity taking place at different frequencies. Torso surface SPs representing HDF rotors during AF were reflected at specific areas corresponding to the fastest atrial location. Conclusion: Phase analysis of surface potential signals after HDF-filtering during AF shows reentrant drivers localized to either the LA or RA, helping in localizing ablation targets