Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model

Autores UPV
Año
Revista Applied Energy

Abstract

The design and optimization of ground source heat pump systems require the ability to accurately reproduce the dynamic thermal behavior of the system on a short-term basis, specially in a system control perspective. In this context, modeling borehole heat exchangers (BHEs) is one of the most relevant and difficult tasks. Developing a model that is able to accurately reproduce the instantaneous response of a BHE while keeping a good agreement on a long-term basis is not straightforward. Thus, decoupling the short-term and long-term behavior will ease the design of a fast short-term focused model. This work presents a short-term BHE dynamic model, called Borehole-to-Ground (B2G), which is based on the thermal network approach, combined with a vertical discretization of the borehole. The proposed model has been validated against experimental data from a real borehole located in Stockholm, Sweden. Validation results prove the ability of the model to reproduce the short-term behavior of the borehole with an accurate prediction of the outlet fluid temperature, as well as the internal temperature profile along the U-tube.