Enhanced Simulink Induction Motor Model for Education and Maintenance Training

Autores UPV
Revista Journal of Systemics, Cybernetics and Informatics


The training of technicians in maintenance requires the use of signals produced by faulty machines in different operating conditions, which are difficult to obtain either from the industry or through destructive testing. Some tasks in electricity and control courses can also be complemented by an interactive induction machine model having a wider internal parameter configuration. This paper presents a new analytical model of induction machine under fault, which is able to simulate induction machines with rotor asymmetries and eccentricity in different load conditions, both stationary and transient states and yielding magnitudes such as currents, speed and torque. This model is faster computationally than the traditional method of simulating induction machine faults based on the Finite Element Method and also than other analytical models due to the rapid calculation of the inductances. The model is presented in Simulink by Matlab for the comprehension and interactivity with the students or lecturers and also to allow the easy combination of the effect of the fault with external influences, studying their consequences on a determined load or control system. An associated diagnosis tool is also presented.