Forced Convection Heat Transfer from a Finite-Height Cylinder

Autores UPV
Revista Flow Turbulence and Combustion


This paper presents a large eddy simulation of forced convection heat transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5, a Reynolds number based on the cylinder diameter of 44 000 and a Prandtl number of 1. Only the surface of the cylinder is heated while the bottom wall and the inflow are kept at a lower fixed temperature. The approach flow boundary layer had a thickness of about 10% of the cylinder height. Local and averaged heat transfer coefficients are presented. The heat transfer coefficient is strongly affected by the free-end of the cylinder. As a result of the flow over the top being downwashed behind the cylinder, a vortex-shedding process does not occur in the upper part, leading to a lower value of the local heat transfer coefficient in that region. In the lower region, vortex-shedding takes place leading to higher values of the local heat transfer coefficient. The circumferentially averaged heat transfer coefficient is 20 % higher near the ground than near the top of the cylinder. The spreading and dilution of the mean temperature field in the wake of the cylinder are also discussed.