Explora I+D+i UPV

Volver atrás Publicación

Modeling reference evapotranspiration with calculated targets.Assessment and implications

Compartir
Autores UPV

Año

Revista

Agricultural Water Management

Abstract

Due to the absence of experimental reference evapotranspiration (ETo) records, data-driven models con-sider in most cases calculated ETotargets to train and test the models, usually according to the standardFAO56 Penman Monteith equation (FAO56-PM). This procedure is also adopted for calibrating moreconventional empirical approaches like the well-known Hargreaves (HG) equation. This study aims atassessing the performance implications derived from using calculated targets instead of experimentalmeasurements for training and testing data-driven models or calibrating empirical methods. Thereforean application of a gene expression programming (GEP) based approach for estimating ETois presentedconsidering calculated and lysimetric targets fed with two different input combinations and assessedthrough k-fold testing. The same procedure is adopted to evaluate the calibration of the HG equation.Finally, the FAO56-PM and the HG equations are compared with their corresponding GEP models bearingin mind the type of targets used. The locally trained GEP4 and GEP6 models trained using the experimen-tal lysimetric targets are more accurate than the corresponding HG and FAO56-PM equations, assessedusing lysimetric benchmarks. The external performance accuracy of GEP4 and GEP6 models decreasesconsiderably in the cross-station approach using experimental targets. In this case, the FAO56-PM andthe HG equations might be preferable. The accuracy of the GEP models trained with calculated targetsdecreases considerably when the performance is assessed using experimental benchmarks. The conclu-sions drawn when only calculated benchmarks are used might be not sound or even false. The sameapplies for empirical equations calibrated with calculated targets. Four new GEP-based equations (oneper input combination and station) are provided to estimate ETo.