Chaos for the Hyperbolic Bioheat Equation

Autores UPV
Revista Discrete and Continuous Dynamical Systems


The Hyperbolic Heat Transfer Equation describes heat processes in which extremely short periods of time or extreme temperature gradients are involved. It is already known that there are solutions of this equation which exhibit a chaotic behaviour, in the sense of Devaney, on certain spaces of analytic functions with certain growth control. We show that this chaotic behaviour still appears when we add a source term to this equation, i.e. in the Hyperbolic Bioheat Equation. These results can also be applied for the Wave Equation and for a higher order version of the Hyperbolic Bioheat Equation.