PS-Cache: an energy-efficient cache design for chip multiprocessors

Autores UPV
Año
Revista The Journal of Supercomputing (Online)

Abstract

Power consumption has become a major design concern in current high-performance chip multiprocessors, and this problem exacerbates with the number of core counts. A significant fraction of the total power budget is often consumed by on-chip caches, thus important research has focused on reducing energy consumption in these structures. To enhance performance, on-chip caches are being deployed with a high associativity degree. Consequently, accessing concurrently all the ways in the cache set is costly in terms of energy. This paper presents the PS-Cache architecture, an energy-efficient cache design that reduces the number of accessed ways without hurting the performance. The PS-Cache takes advantage of the private-shared knowledge of the referenced block to reduce energy by accessing only those ways holding the kind of block looked up. Experimental results show that, on average, the PS-Cache architecture can reduce the dynamic energy consumption of L1 and L2 caches by 22 and 40%, respectively.