Geometrical isotropy in perforated plates with subwavelength holes decorated with Archimedean patterns

Autores UPV


The design and use of small apertures perforated in opaque plates to control the transmission of ultrasonic waves has been widely studied in recent years. The ultrasonic transmission response of brass plates perforated with Archimedean patterns of subwavelength hole arrays immersed in water is reported, both numerically and experimentally, in this work. It is shown that an increase in the geometrical isotropy of the elementary cells of the Archimedean patterns gives rise to a suppression of both minimum and maximum transmission corresponding to the destructive and constructive interferences, leading to uniformity within the angle-dependent transmitted sound power coefficient. The experimental results are in close agreement with the calculated ones. This property can be used to design ultrasonic devices such as filters and sensors.