Resumen
Las técnicas rápidas, no destructivas y libres de químicos tienen una demanda creciente en muchos campos de la industria. Las técnicas de espectroscopia de infrarrojo cercano (NIRS) y imágenes hiperespectrales NIR (NIR-HSI) han mostrado un gran potencial para determinar los parámetros de calidad de los alimentos, autenticar productos alimenticios, detectar el fraude, entre otras. En la NIRS, las medidas se toman en puntos específicos, detectando solo una pequeña porción; en la NIR-HSI, la información espectral y espacial se combinan, lo que la convierte en una opción adecuada para muchos productos alimenticios, ya que son matrices muy heterogéneas. Por lo tanto, este estudio tuvo como objetivo revisar la aplicación de NIRS (dispersivos), NIR de Transformada de Fourier (FT) y HSI en la evaluación de los parámetros de calidad de harina de trigo y productos a base de trigo, así como para la autenticación y determinación de la composición de estos productos. Además, este trabajo tuvo como objetivo identificar y clasificar diferentes tipos de muestras de fibra agregadas a la semolina y pasta producidas por estas formulaciones, y monitorear el proceso de cocción de esta pasta enriquecida en fibra mediante técnicas espectrales. Además, se objetivó aplicar HSI a otro producto en polvo, por lo que se cuantificó el contenido de pectina en las cáscaras de naranja. Primero, se adquirieron espectros NIR para comparar la precisión en la clasificación de muestras enriquecidas con fibra, para cuantificar la cantidad de estas fibras y verificar su distribución en muestras de semolina. Para la clasificación se utilizaron el Análisis de Componentes Principales (PCA) y el Soft Independent Modelling of Class Analogy (SIMCA). Los modelos de regresión de mínimos cuadrados parciales (PLSR) aplicados a espectros NIR-HSI mostraron R²P entre 0,85 y 0,98 y RMSEP entre 0,5 y 1, y los modelos se utilizaron para construir los mapas químicos para verificar la distribución de fibra en las superficies de las muestras. Además, se probó el NIR-HSI junto con Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) para investigar la capacidad de evaluación, resolución y cuantificación de la distribución de fibra en la pasta. Los resultados mostraron R²P entre 0.28 y 0.89,% de falta de ajuste (LOF) <6%, varianza explicada sobre 99% y similitud entre espectros puros y recuperados sobre 96% y 98%. Además, se probó VIS/NIR-HSI en el modo de transmisión como una alternativa objetiva para la clasificación de muestras de pasta según el tiempo de cocción. El análisis discriminante lineal (LDA) mostró valores de sensibilidad y especificidad entre 0,14-1,00 y 0,51-1,00, respectivamente, y una tasa de ausencia de error (NER) superior a 0,62. El análisis discriminante de mínimos cuadrados parciales (PLSDA) mostró valores de sensibilidad y especificidad entre 0,67-1,00 y 0,10-1,00, respectivamente, y NER superiores a 0,80. Los resultados de este trabajo mostraron que la técnica NIR-HSI se puede utilizar para la identificación y cuantificación de la fibra agregada a la semolina. Además, NIR-HSI y MCR-ALS pueden identificar la fibra en la pasta. La HSI en el modo de transmisión demostró ser una técnica adecuada como alternativa objetiva para la clasificación de muestras de pasta según el tiempo de cocción como una forma de automatizar la determinación de los atributos de la pasta. La determinación del contenido de pectina en cáscaras de naranja se investigó usando NIR-HSI. LDA mostró mejores resultados de discriminación considerando tres grupos: bajo (0-5%), intermedio (10-40%) y alto (50-100%) contenido. Los modelos PLSR basados en espectros completos mostraron mayor precisión que los basados en pocas longitudes de onda seleccionadas. Los resultados demuestran el potencial de NIR-HSI para cuantificar el contenido de pectina en las cáscaras de naranja, proporcionando una técnica valiosa para los productores de naranja y las industrias de procesamiento.