Resumen
Las nuevas disposiciones legales derivadas del cambio climático dictaminan que las estructuras hidráulicas sean capaces de funcionar correctamente con eventos de inundación asociados a periodos de retorno de hasta 10,000 años. Esto, obviamente, implica adaptar la infraestructura existente para satisfacer dichos requerimientos. A fin de evitar riesgos en la restitución de los caudales vertidos al río, como desbordamientos o procesos erosivos y de socavación, el diseño hidráulico ha de sustentarse en herramientas fiables capaces de reproducir el comportamiento de las estructuras hidráulicas.
En este trabajo, se presenta un modelo numérico CFD completamente tridimensional para reproducir el comportamiento de diferentes tipos de flujo aire-agua en estructuras hidráulicas. Se asume que el flujo es turbulento, isotrópico e incompresible. Diversos modelos de turbulencia RANS son contrastados y se emplean mallas estructuradas rectanuglares para discretizar el dominio analizado. La presencia de dos fluidos es modelada utilizando diferentes enfoques VOF y las simulaciones son ejecutadas empleando el algoritmo PIMPLE. El modelo es implementado mediante la plataforma de código abierto OpenFOAM y su respuesta es comparada con la del modelo comercial FLOW-3D. El análisis se lleva a cabo sobre dos partes diferentes de una estructura hidráulica, a saber, el aliviadero y el cuenco amortiguador, de forma separada. Además, un caso de aplicación práctica, donde el modelo reproduce el flujo en una estructura real, es presentado también a fin de probar la adecuación del modelo a casos de diseño aplicado.
Se comprueban la independencia de la malla y la validación con datos experimentales de los resultados de todos los casos de estudio. La sensibilidad del modelo presentado a ciertos parámetros es analizada de forma exhaustiva empleando diferentes variables indicadoras. Los pros y contras de cada uno de éstos son planteados. Los modelos de turbulencia analizados son el Standard k-epsilon, el Realizable k-epsilon, el RNG k-epsilon y el SST k-omega. Los esquemas de discretización estudiados son: un método de primer orden upwind, uno de Van Leer de segundo orden y un esquema de segundo orden limitado de diferencias centradas. Los enfoques VOF analizados son el Partial VOF, implementado en OpenFOAM, y el TruVOF, implementado en FLOW-3D.
En la mayoría de casos, el modelo k-epsilon aporta las estimaciones más precisas de perfiles de lámina libre de agua, pese a que el resto de variables, con alguna excepción, son mejor predichas por el RNG k-epsilon. Este modelo generalmente requiere mayores tiempos de cálculo. El k-omega reproduce correctamente los fenómenos bajo estudio, pese a que su precisión es generalmente más baja que la de los modelos k-epsilon.
En lo que respecta a la comparación entre enfoques VOF y códigos, es imposible determinar cuál es el mejor. Por ejemplo, OpenFOAM, empleando el Partial VOF, logra reproducir la estructura interna del resalto hidráulico y todas las variables derivadas mejor que FLOW-3D, empleando el TruVOF, a pesar de que este último parece capturar mejor la transferencia de cantidad de movimiento y, por tanto, todas las variables derivadas. En el caso del flujo en aliviaderos escalonados, OpenFOAM captura mejor los perfiles de velocidad, pese a que FLOW-3D es más preciso en la estimación de los perfiles de lámina libre de agua. Conviene recalcar que ni tan sólo su respuesta a ciertos parámetros del modelo es comparable. Por ejemplo, FLOW-3D es significativamente menos sensible al refinado de malla que OpenFOAM.
A la luz de la precisión de los resultados obtenidos en todos los casos, el modelo propuesto es completamente aplicable a casos de diseño más complejos, donde cuencos amortiguadores, aliviaderos escalonados y estructuras hidráulicas en general han de ser investigadas.