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Abstract. Query-by-Example Spoken Term Detection (QbE-STD) tasks
are usually addressed by representing speech signals as a sequence of fea-
ture vectors by means of a parametrization step, and then using a pattern
matching technique to find the candidate detections. In this paper, we
propose a phoneme-based approach in which the acoustic frames are first
converted into vectors representing the a posteriori probabilities for ev-
ery phoneme. This strategy is specially useful when the language of the
task is a priori known. Then, we show how this representation can be
used for QbE-STD using both a Segmental Dynamic Time Warping al-
gorithm and a graph-based method. The proposed approach has been
evaluated with a QbE-STD task in Spanish, and the results show that it
can be an adequate strategy for tackling this kind of problems.
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1 Introduction

In the last few years both the amount and the availability of digital data have
rapidly and substantially increased. These facts have led to the need of interact-
ing in a multimodal way with a variety of information repositories in order to
find useful information in them, opening this way new and important challenges
in the field of Language Technologies. The Spoken Term Detection (STD) task
is among these challenges. It consists on finding all the occurrences of a search
term, which ortographic transcription is provided and can be composed of more
than one word, in the contents of an audio repository. However, the input may
also be an utterance representing the search term. In this case, the problem is
known as Query-by-Example Spoken Term Detection (QbE-STD) and both the
input query and the collection of documents are acoustic signals. Both of these
tasks have been studied lately [1–4], and some examples of their interest and
importance are the evaluation campaigns carried out in this line, such as the
one organized by NIST in 2006 [5] and the MediaEval evaluations [6]. In this
paper, we will focus on the Query-by-Example Spoken Term Detection task.
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Most of the methods that have been proposed for the QbE-STD task are
based on classical pattern matching algorithms. Specifically, the search is per-
formed by means of an algorithm that matches the feature vectors corresponding
to both the queries and the documents in the audio repository, looking for oc-
currences of the queries in the documents. The feature vectors are usually a
standard parametrization of the acoustic signal, for example based on cepstrals.
Also, in the recent literature one of the most usual algorithms to perform this
search is Segmental Dynamic Time Warping (SDTW) [1–4].

In this work, we perform a step after the parametrization, in which the pos-
terior probabilities of the phonemes given the acoustic frames are calculated.
This implies that the set of phonemes that are going to be used must be a priori
known, but it is not a problem if the language of the task is fixed. These pho-
netic probabilities are computed by means of a process of acoustic clustering and
classification in terms of acoustic classes, as explained in Section 2. Then, the
phonetic probabilities worked out in this step will be the base for two QbE-STD
algorithms. First, Section 3 shows a SDTW algorithm that uses the Kullback-
Leibler divergence and a specific set of transitions. Section 4 shows a method to
build graphs of phonemes from the phonetic probabilities and an algorithm to
perform the QbE-STD task. This algorithm is based on searching common paths
in the graphs corresponding to the document and the query, allowing edit op-
erations to gain flexibility. A description of the experiments we have performed
and a discussion of their results is shown in Section 5, and finally in Section 6
some conclusions are drawn.

2 Computation of the a posteriori probabilities of the
phonemes

After a standard parametrization of the acoustic signal using cepstrals, we will
carry out a procedure to compute the a posteriori probability of every phoneme
u in a pre-defined set of phonetic units U given each acoustic frame xt, it is,
p(u|xt). For this computation, a set of acoustic classes A is obtained using a
clustering procedure on the acoustic feature vector space using the unsupervised
version of the Maximum Likelihood Estimation (MLE) algorithm. Assuming
that the acoustic classes can be modelled as Gaussian distributions, the output
of this procedure is a Gaussian Mixture Model (GMM). The use of conditional
probabilities allows us to compute the phonetic-conditional probability density
p(xt|u) as follows [7]:

p(xt|u) =
∑
a∈A

p(xt|a) · p(a|u) (1)

for each u ∈ U , where p(xt|a) is the acoustic class-conditional probability pro-
vided by the GMM, and p(a|u) is the conditional probability that acoustic class
a was manifested when phonetic unit u was uttered.

The conditional probabilities p(a|u) for all a ∈ A and for all u ∈ U are
computed by a progressive refinement algorithm for phonetic segmentation [8].
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It starts from an initial coarse segmentation and continues until no improvements
on the segmentation are found. As a labeled corpus for phonetic segmentation
is needed to perform this process, we have used the training subcorpus of the
Spanish Albayzin database [9].

Thus, the a posteriori probability of each phonetic unit u given an acoustic
vector xt, p(u|xt), can be rewritten as

Pr(u|xt) =

∑
a∈A

p(xt|a) · p(a|u)∑
v∈U

( ∑
a∈A

p(xt|a) · p(a|v)
) (2)

In the next two sections we will show two different ways of using these pho-
netic probabilities for a QbE-STD task.

3 Segmental Dynamic Time Warping with a posteriori
phonetic probabilities

Segmental DTW (SDTW) [10] is a modification of the well-known Dynamic Time
Warping algorithm. The goal of SDTW is to find multiple local alignments of
two input utterances, represented as a sequence of vectors. The main difference
between SDTW and DTW is that, while in DTW there is only one start point
for the alignment, SDTW allows the alignment to start at any point along the
speech document. This is very convenient for the QbE-STD task, as the goal is
to find all the occurrences of the query in each of the documents.

In our case, the vectors corresponding to the utterances will contain the a
posteriori probabilities for each phoneme, given each frame.

Instead of using the DTW typical transitions, we have used (as in other
works like [1]) a different set of transitions, as shown in Equation 3. This set
of movements ensures that the paths found will represent alignments where the
number of frames taken in the document is between half and twice the length of
the query. Therefore, the minimization function at each point is given by:

D(i, j) =


0 j < 1

min

D(i− 1, j − 1)

D(i− 2, j − 1)

D(i− 1, j − 2)

+ KL(A(i), B(j)) j ≥ 1
(3)

where A(i) is the vector of a posteriori phonetic probabilities for the frame i of
the speech document, B(j) represents the a posteriori probabilities of phonemes
for the frame j of the query, and KL is the Kullback–Leibler divergence [11].

All the paths in the Dynamic Programming matrix that arrive to the end of
the query are considered candidate detections. However, many of these detections
are false positives. To filter out these detections, Algorithm 1 is performed. This
way, our final set of detections has only at most d elements, and all of them
are the ones with best scores. It must be noted that the sorting performed in
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the first line of Algorithm 1 could be either in ascending or descending order,
depending on the objective function of the search procedure.

Algorithm 1 Algorithm to filter a list of detections

Require: A list of candidate detections CD,
a maximum number of filtered detections d

Ensure: A list of filtered detections FD
1: SCD = sort the hypothesis in CD by their score
2: FD2 = empty list
3: while SCD is not empty do
4: h = first element of SCD
5: Move h to FD2
6: Delete from SCD all the detections whose timespan overlaps h
7: end while
8: Determine a threshold t considering the score of the elements in FD2
9: FD = first d elements of FD2 whose score fulfills the threshold t

10: return FD

Determining the threshold t for this algorithm is a task that can be addressed
in a variety of ways. In our case, we have performed a linear combination of
some statistics of the scores, like the mean, the median, the maximum and the
standard deviation. The weights assigned to each of these statistics provide us
a range of thresholds that can be used to tune the performance of the system.
Also we have considered as the input list of candidate detections CD all the
detections found in all the documents for a specific query. This means that the
pruning made by this algorithm is local to the specific query, considering all the
documents in the repository as a whole. In consequence, for each query at most
d detections among all the documents are considered as confirmed detections.

4 A graph-based algorithm for QbE-STD

Taking advantage of the sequentiallity of speech, our graphs of phonemes have
a left-to-right topology. Nodes act like time marks, and every node has a times-
tamp. The arcs have associated the phonetic unit uttered between the times-
tamps kept by origin and destination nodes, and also its phonetic probability.

The construction algorithm has two steps: phoneme detection, and error cor-
rection. In the first step, each vector of phonetic probabilities is analyzed in order
to find if there is any probability above a detection threshold. If the probability
of a phoneme is above this threshold, we consider that it has been uttered, but
the time in which its pronunciation started and finished is still undetermined. In
order to fix the starting and ending time of the detected phoneme, a new thresh-
old (called extension threshold), less restrictive than the detection threshold, is
used. That is, starting from the frame, or frames, where a phoneme was detected,
an extension process is performed considering the previous and following frames
that overpass the extension threshold for that phoneme. This extension process
finishes as soon as the extension threshold for the phoneme is not exceeded. The
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reason for using this lower threshold is that the initial or final parts of phonemes
are less clearly pronounced and detected than its central part. Both thresholds
are empirically determined.

The error correcting step consists on detecting and correcting both spurious
aparitions and misses of phonemes. This is the case of very short phonemes, or
some gaps in a zone where a phoneme was detected with enough probability.

Finally, the graph of phonemes is built according to these corrections. A node
is created whenever the detection of any phonetic unit begins or ends. Arcs are
built in a way that all go from a node to the following one. Thus, each arc may
represent either a complete detection of a phoneme, or a part of it. The weight of
each arc is the accumulated log-probability of the detection between the instants
represented by the starting and ending nodes.

4.1 Search algorithm

Once the documents and the queries are represented as graphs of phonemes, we
can take them in pairs to perform the QbE-STD task. The basis of this algo-
rithm is to find, for each node i in the graph corresponding to the document,
the common path in both graphs that goes through all the query, finishes at i in
the document, and has the maximum combined score, defined as the sum of the
weights of both paths individually. To find these common paths, edit operations
on the arcs are allowed, in order to make this search more flexible and to cor-
rect possible errors made while building the graph of phonemes. Insertion and
deletion operations have a constant penalization, while the cost of a substitution
may depend on the pair of phonemes being considered. For this work, we have
only allowed coincidences, as well as substitutions of vowels by their semivowels,
consonants by their semiconsonants and vice versa.

The algorithm that searches for these common paths follows a Dynamic Pro-
gramming (DP) strategy. Let M be a matrix of dimensions I×J , where I and J
are the number of nodes of the graphs representing the document and the query,
respectively. Thus, M(i, j) will contain the best score for arriving to node i in
the document and j in the query, using both the arcs in the graphs and the edit
operations allowed. Also, given an arc a, let ori(a) and dest(a) be functions that
return respectively the position in the graph of the starting and ending nodes of
a, W(a) a function that returns the weight of the arc, and S(a) a function that
provides the symbol (phoneme) attached to the arc. Thus, the algorithm can be
stated as follows:

M(i, j) =

{
0 if j = 0

max {arcSub(i, j), arcIns(i, j), arcDel(i, j)} otherwise
(4)

where:

arcSub(i, j) = max
∀ arcs a,b:

dest(a)=i ∧ dest(b)=j

{M(ori(a), ori(b))+W(a)+W(b)+ksub(S(a),S(b))}

arcIns(i, j) = max
∀ arc a: dest(a)=i

{M(ori(a), j) + kins}
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arcDel(i, j) = max
∀ arc b: dest(b)=j

{M(i, ori(b)) + kdel}

ksub(x, y) =


0 if x = y

0 if x is semivowel or semiconsonant of y or vice versa

−∞ otherwise

kins and kdel are constants that must be empirically determined.
Once the DP matrix has been filled, all the cells corresponding to the last

node of the query represent candidate detections. Thus, they must be filtered in
order to reject as many false positives as possible. In this case, Algorithm 1 is
also used for finding the confirmed detections.

5 Experiments and results

To evaluate these approaches, we have performed several experiments using the
MAVIR database [12]. This is the Query-by-Example Spoken Term Detection
corpus that was used in the Search on Speech track of the 2012 Albayzin Eval-
uation. A feature of this task is that the language of both the queries and the
collection of documents is Spanish, so it is a priori known.

In this task we can distinguish two kinds of files. First, there are 10 files
corresponding to recordings of conferences and academic acts carried out in
Madrid between 2006 and 2008. The speech in these files is spontaneous and
was acquired in a variety of conditions using different microphones. Also different
accents of the Spanish language are represented. In addition, these files are very
long, with a duration between 19 and 75 minutes. These facts make this task very
hard. Second, the other kind of files is the set of queries, which is composed of
120 terms. The whole set of files is divided this way: 60 queries and 7 documents
for development and 60 queries and 3 documents for test.

As it is usual in Information Retrieval (IR) tasks, we have considered the
standard Precision and Recall, and its combination by means of the F1-Measure.
Figures 1 and 2 show the evolution of these measures for the development set
using a variety of thresholds, considering as the maximum number of confirmed
detections for the filtering algorithm the one that provided the best results in
our experiments. In the case of the graph-based approach, a large amount of
combinations of insertion and deletion constants have been tried, and Figure 2
shows the evolution for the configuration that achieved the best results.

Figure 1 shows that for the development set the SDTW approach reaches
a Precision of more than 30%, while the best Recall is around 14%. However,
in some IR applications it is more important to find some detections with a
relatively large precision, than finding them all. Another interesting fact is that
there is a point where, even varying the threshold, the results do not change.
This happens when too many candidate detections surpass the threshold of the
filtering algorithm, and the pruning is just done by considering the maximum
number of hypotheses specified beforehand. The results shown in Figure 2 are
not as good as the obtained with the SDTW algorithm. This is due to the fact
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Fig. 1. Precision, Recall and F1 for the development data for the SDTW approach.
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Fig. 2. Precision, Recall and F1 for the development data for the graph-based approach.

that the difficulty of the task and the noisy conditions of the audio recordings
make the graph builder algorithm generate many errors that can not be recovered
when the graphs of phonemes are processed.

Table 1 shows the results obtained for the test set using the parameters that
optimized the F1-Measure in the development phase.

Table 1. Results obtained for the test set.

System Precision (%) Recall (%) F1-Measure (%)

SDTW 31.2 18.3 23.1

Graph-based 9.0 10.2 9.6

In the test set the experiments using Segmental DTW also outperform the
experiments with the graphs of phonemes. Thus, the codification of the frames
in terms of the posterior probabilities of phonemes seems to be a good repre-
sentation, and the Segmental DTW algorithm using this representation gives
good enough results. However, SDTW has a higher time complexity than the
algorithm based on graphs of phonemes, as the number of nodes of the graphs is
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usually much lower than the number of frames. In consequence, our graph-based
approach seems promising, and we will continue working on how to improve it.

6 Conclusions

In this work, we have presented two algorithms for Query-by-Example Spoken
Term Detection based on the computation of a posteriori phonetic probabilities
of the phonemes given the speech signals. One of these algorithms performs a
Segmental DTW search, while the other represents the query and the document
as graphs of phonemes and searches for common paths in both graphs using edit
operations. The experimental results show that our codification of the frames in
terms of a posteriori probabilities of the phonemes and the proposed algorithms
are a good approach to QbE-STD. As future work, we want to improve the
performance of the graph-based method presented in this paper, for example
trying to make the phoneme detection process more robust.
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